
E i B tt bEric Battenberg ericb@eecs berkeley eduEric Battenberg ericb@eecs.berkeley.edug y

h l lO i i ith D i P ttThe Application CUDA ResultsOrganizing with Design PatternsThe Application CUDA ResultsOrganizing with Design PatternsThe Application CUDA Resultsg g g
Wl f dA di ti i i t t t f M i CUDA i 30 f t th M tl b i
W

SGEMM Element
divide

Element-
add SGEMMH•Example of a design•Audio source separation is an important part of Music •CUDA version runs over 30x faster than Matlab version.-divideadd Element

di id
Element

mult

HExample of a design 
pattern decomposition forAudio source separation is an important part of Music CUDA version runs over 30x faster than Matlab version.-divide -multXpattern decomposition for 

I f i R i l 18 6 f h O MP i h 14 h d
Column

sumsWone update step on CUDAInformation Retrieval •18 6x faster than OpenMP with 14 threadssumsone update step on CUDA
Thi h l iInformation Retrieval 18.6x faster than OpenMP with 14 threads•This helps us organize our p g

code and communicate our•Drum track extraction is a specific example of source •4 3x faster than sequential CPipe-and-Filter
code and communicate our 

l d•Drum track extraction is a specific example of source •4.3x faster than sequential Cp

computational needs.
S El i

computational needs.

separation and is useful in rhythm summarization drum •Computation time down to 0 6 sec for 20 sec of audioMap-ReduceSGEMMs Sums Element-wise 
arithmeticseparation and is useful in rhythm summarization, drum •Computation time down to 0.6 sec for 20 sec of audio arithmetic

•SGEMMs require ~400 Mflops
Dense Linear 

Algebra
Graph 

Algorithms

SGEMMs require 400 Mflops
per iteration while other steps

transcription and beat tracking which makes the app much more feasible
Algebra Algorithmsper iteration, while other steps 

i l th 10 Mfltranscription, and beat tracking. which makes the app much more feasible.Data Parallel Geometric Data Parallel Recursive Data Parallel
require less than 10 Mflops.p , g ppData Parallel Decomposition Data Parallel Splitting Data Parallel
•But sums require inter-thread

W N ti M t i F t i ti (NMF) th SPMD SPMD

But sums require inter thread 
communication and divides are•We use Non-negative Matrix Factorization (NMF) as the Distributed Array SPMD Distributed Array SPMD Strict Data Parallelcommunication, and divides are 
lWe use Non negative Matrix Factorization (NMF) as the slow.

i h i
SIMD Coll. Sync SIMD Coll. Sync SIMD

source separation technique
y y

source separation technique.

•The process:•The process:
Ti /f OpenMP ResultsTime/frequency

t OpenMP ResultsInput audio Spectrogram
components OpenMP ResultsInput audio Spectrogram p

Spectral ComponentSpectral 
Feature NMF

Component 
Feature I t l’ MKL i d f SGEMM for pragma with reduction clauseFeature 

Extraction
NMF Feature 

Extraction •Intel’s MKL is used for SGEMMs for pragma with reduction clause
Extraction Extraction

O MP f d d i•OpenMP for and reductionOpenMP for and reduction
l d f dclauses are used for sums and 

P i
Percussive

element wise arithmeticPercussive 
f t

components element-wise arithmetic 
features

SVMAudio SVM 
Classifier

Audio 
Resynthesis l d l k h lClassifierResynthesis •Scaling on dual-socket Nehalem

•However programming in CUDA requires much moreD t k
Scaling on dual socket Nehalem 
h •However, programming in CUDA requires much more Drum track show: g gshow:

•For a 512x3500 spectrogram representing 20 seconds of audio effort than OpenMP and Matlab (especially when we need•4x speedup over sequential C•For a 512x3500 spectrogram representing 20 seconds of audio effort than OpenMP and Matlab (especially when we need 4x speedup over sequential C p ( p y
•7x speedup over Matlaband 30-source NMF: i t th d i ti )
•7x speedup over Matlaband 30 source NMF: inter-thread communication).inter thread communication).

•NMF takes 80% of the compute time (18 5 of 23 1 sec) in P i i l l l CUDA i l h hil f•NMF takes 80% of the compute time (18.5 of 23.1 sec) in •Programming in low-level CUDA is only worthwhile forProgramming in low level CUDA is only worthwhile for 
the Matlab implementationthe Matlab implementation. important compute-intensive routinesimportant compute intensive routines
We will parallelize NMF using OpenMP for multi core CPUs T i CUDA•We will parallelize NMF using OpenMP for multi-core CPUs Tuning CUDAp g p Tuning CUDA

d CUDA f N idi GPU
g

and CUDA for Nvidia GPUs.and CUDA for Nvidia GPUs.
W SGEMM f CUBLAS 2 1•We use SGEMM from CUBLAS 2.1
SGEMM 26% f if Conclusions•SGEMMs run 26% faster if ConclusionsSGEMMs run 26% faster if 

t i dd d t lti l Conclusionsmatrices are padded to multiples p p
of 32 Example of element-wise addition

CUDA hi hi h f f d t ll l i
of 32 Example of element wise addition

•CUDA can achieve high performance for data-parallel musicCUDA can achieve high performance for data parallel music 

lN N ti M t i F t i ti l h applicationsNon-Negative Matrix Factorization •Element-wise arithmetic is applications.Non Negative Matrix Factorization Element wise arithmetic is 
li h d i

g
accomplished using a separate

•Programmer effort in CUDA is much too great for music
accomplished using a separate 
th d f h l t •Programmer effort in CUDA is much too great for music •NMF is an optimization problem and for music a thread for each element.•NMF is an optimization problem, and for music a 

applications programmersapplications programmers.divergence cost function works well: pp p gdivergence cost function works well: •Reductions (sums) require mostg Reductions (sums) require most 
ffprogramming effortprogramming effort.

•Reorganize binary tree Two ways to organize binary tree reduction•Reorganize binary tree Two ways to organize binary tree reduction

C i d W kreduction to avoid divergent Continued Workreduction to avoid divergent 
d b k Continued Workwarps and memory bank Continued Workwarps and memory bank 

fli ( i M h d 2)conflicts (as in Method 2).
•Developing Python modules of these implementations

conflicts (as in Method 2).
l l ll d •Developing Python modules of these implementations.•Also loop unrolling and p g y pAlso, loop unrolling, and 
l i l l b l d P t ti l f C h d j t t k CUDAmultiple global memory reads •Potential for Copperhead project to make CUDA more•We use multiplicative

multiple global memory reads 
th d Potential for Copperhead project to make CUDA more •We use multiplicative per thread.

i l f i i i
p

d f practical for writing music appsgradient based updates: •Most speedup comes from practical for writing music apps.gradient-based updates: Most speedup comes from 
i h 30

g p
running the 30 sums

•Eventually building a DSL or framework to assist in
running the 30 sums 

tl •Eventually building a DSL or framework to assist in concurrently. 
3 l l d h

y
constructing parallel music apps3-source NMF results aligned with constructing parallel music apps.g

the input audio’s scorethe input audio s score


