
Parallelizing Audio Feature Extraction Using an Automatically

Partitioned Streaming Dataflow Language.

Eric Battenberg and Mark Murphy
CS 267, Spring 2008

May 19, 2008

Abstract

We implement several versions of an audio feature ex-
traction algorithm in a streaming data-parallel lan-
guage, StreamIt. We attempt to use the StreamIt
infrastructure for a performance study, but are dis-
appointed by portability problems with StreamIt and
a lack of optimizations for our target architectures in
the StreamIt compiler; however, in certain cases, the
compiler does produce noteworthy uniprocessor re-
sults.

1 Introduction

There is consensus among both industry and
academia that the era of the sequential processor is
over. For a variety of reasons, it is infeasible to con-
tinue the exponential increase in uniprocessor perfor-
mance that we enjoyed over the past two decades.
If we are to continue to improve the performance of
computer systems, we are forced to innovate in rad-
ically different ways at the hardware level. So far,
the quest to find hardware innovations that do not
significantly affect the processor’s programming en-
vironment has been unsuccessful. It is clear that we
need to change the way we program if we are to take
advantage of future processing platforms.

The wide array of processor designs available today
represents a hybrid of two design goals. First, pro-
cessor designers still desire to increase the amount of
on-chip processing throughput with continuing silicon
lithography improvements. In the absence of feasible
microarchitectural improvements to processor cores,
the most common solution has been to integrate mul-
tiple processor cores onto the same die, as well as
to add SIMD instruction set extensions.Second, it
is necessary to maintain compatibility with exist-
ing software infrastructure. Consequently, the inter-
face exposed to the Operating System is usually that
of a traditional Cache-Coherent Symmetric Multi-

Processor (SMP). Despite several attempts [4, 5], pro-
cessor designers have yet to find a highly productive
general-purpose programming interface to novel pro-
cessor designs.

In order to improve the performance of an applica-
tion, software developers now need to produce paral-
lel codes. To take full advantage of the available hard-
ware resources, the end binary must utilize multiple
granularities and styles of parallelism. Furthermore,
a code optimized for one processor may perform sig-
nificantly worse on a different processor, even if the
processors are binary-compatible. It is clear that the
currently available programming interfaces, specifi-
cally POSIX Threading with SIMD instruction sets,
are insufficient for general software development.

We believe that domain-specific programming envi-
ronments are a very enticing option. These environ-
ments, which may include programming languages,
runtime systems, libraries, development tools, or sim-
ply programming methodologies, would incorporate
optimizations specific to a set of similar applications
executing on a particular processor or class of proces-
sors. Ideally, these environments would separate the
important, but difficult to implement, performance-
enhancing program transformations that are mean-
ingful to an application domain. Likely, the result-
ing code will be less efficient than a hand-optimized
code. However, the performance loss is easily justi-
fied by eased software development and debugging,
since software developers no longer need to reason in
terms of threads, locks, SIMD, or cache-coherence.

2 StreamIt

Description of the language, its goals, the claims of
the MIT people about what it can do, etc. [3] [8] [9]

StreamIt[8] is a dataflow language that aims to im-
prove the programmability of streaming applications,
that is, applications that involve the processing of
some sort of constant synchronous flow of informa-

1



tion. At the same time, the StreamIt compiler at-
tempts to solve the parallel performance problem by
automatically optimizing and partitioning computa-
tion across multiple processing elements.

The StreamIt language uses a simple C-like syntax
to describe the structure of a dataflow program [9].
Computational steps are segmented into function-like
constructs called “filters” which can be cascaded in
a “pipeline”. Task-level parallelism is described us-
ing the “split-join” and “feedback loop” constructs.
See Figure 1 for illustrations of these basic StreamIt
building blocks. Input/output rates are an important
part of any streaming application, and the language
handles this by using pop,push, and peek declarations
for each filter. Pop and push handle the input and
output rates respectively, while peek defines how far
into the future the filter can look to access input val-
ues. In addition, the built-in pop() and push() func-
tions are used to access input values and assign out-
put values.

filter

filter

split join

filter

split

filterfilter

join splitfilter

filter

pipeline

split-join

feedback loop

Figure 1: Basic constructs used in a StreamIt program.

Code examples for basic StreamIt constructs are
shown in Figure 2.

The StreamIt compiler has been used successfully
to optimize streaming applications on MIT’s Raw ar-
chitecture [3] but hasn’t seen much attention regard-
ing performance on x86 multicore architectures. The
strategy behind the multicore optimizations of the
StreamIt compiler is as follows. First, the granular-
ity of the program is coarsened by “fusing” adjacent
filters where possible. This reduces the amount of

//filter construct

float->float filter Downsample(int N) {

// downsample by a factor of N

work pop N push 1 peek 1 {

int i;

push(pop()); //output a single input value

//consume the remaining (N-1) input values

for(i=0;i<(N-1);i++)

pop();

}

}

//splitjoin constructs

float->float splitjoin ExampleSplitJoin() {

// execute two filters in parallel

split duplicate;

add SomeFilterA();

add SomeFilterB();

join roundrobin;

}

//pipeline construct

void->void pipeline ExamplePipeline() {

add Source();

add Downsample(4);

add ExampleSplitJoin();

add Sink();

}

Figure 2: Code examples of basic StreamIt constructs.

communication and number of buffer copies required.
Second, data parallelism can be exploited by creat-
ing separate copies of filters to be used on separate
threads. Third, the compiler “pipelines” computa-
tion by attempting to optimize the order and distri-
bution of work amongst processing elements in order
to minimize idle synchronization time. These opti-
mizations are detailed in [3].

Our aim is to evaluate the productivity of the
StreamIt language for implementing music informa-
tion retrieval feature extraction algorithm as well as
the performance obtained using the StreamIt com-
piler to target the architectures outlined in the fol-
lowing section.

3 Architectures of Interest

The current architectural landscape is chaotic. In the
past several years, the techniques used in the 1980’s
and 1990’s for increasing sequential program perfor-
mance have reached a dead-end. Specifically, we face
three fundamental “walls” [1] in further performance
improvement for sequential processors. First, we have
reached the limits of feasible processor power con-
sumption due both to leakage and to clock frequency
scaling. Processor designs have stalled at about 3

2



GHz since the introduction of the Pentium 4, de-
spite several generations of improvements in silicon
lithography. In fact, superscalar designs more recent
than the Pentium 4 are far less aggressive in terms of
pipeline depth, speculation, and clock frequency, as
these performance-enhancing techniques tend to de-
crease power efficiency. Second, core processor speeds
have increased much faster than have DRAM speeds.
Cache misses resulting in off-chip memory accesses
stall today’s superscalar processors for several hun-
dreds of cycles. Since the sequential instruction sets
of superscalar processors do not allow the program
to effectively express memory-level parallelism, mem-
ory latency is the primary performance bottleneck
of many codes on modern processors. Finally, de-
spite significant research and development effort, it
has been extremely difficult to extract further in-
struction level parallelism (ILP) without infeasibly
complex, large, and power-hungry microarchitectural
structures.

Different design teams have responded to these
challenges with vastly different design decisions.

3.1 8-Core Clovertown

The most recent architectural iteration available from
Intel is the Clovertown, of the Core 2 class of proces-
sors. The Clovertown’s pipeline is a four-wide out-
of-order superscalar implementing the IA32 instruc-
tion set with SSE2 SIMD instruction set extensions.
The Clovertown machine available to us is a dual
socket × quad-core, running at 2.66 GHz. Each of
the eight cores includes 32 KB of L1 data cache, and
each pair of cores shares a 4 MB L2 cache. For our
chosen benchmark application, the aggregate 16 MB
L2 cache is more than enough to contain the entire
data set. Off-chip memory bandwidth will only be
important for inter-core communication. On cache-
coherent architectures such as Clovertown, all inter-
core communication must occur via cache-coherency
traffic. The two sockets in our Clovertown system
share access to a single chipset, which contains the
memory controllers for the system. These links have
10.6 GB/s of bandwidth.

3.2 4-Core Opteron

Our second target machine is a dual core × dual
socket AMD Opteron 2214 system. The cores op-
erate at 2.2 GHz and can fetch, decode, and retire
three x86 instructions per cycle. The memory hier-
archy consists of private 64 KB L1 data caches, and
private 1 MB L2 Victim caches. There is no cache-
sharing between cores, but all caches are coherent.

Inter-socket communication is provided over a single
bidirectional 4 GB/s HyperTransport link. Memory
controllers are integrated onto the same die as the
cores. Although there is less bandwidth available for
inter-socket communication, the lack of an intermedi-
ary chipset and the utilization of the HyperTransport
protocol may provide a lower latency communication
interface.

3.3 8-core (128 thread) Niagara 2

The Niagara 2, or UltraSparc T2 processor, repre-
sents a significant divergence in design philosophy
from the previous two architectures. Rather than fo-
cusing on single-thread sequential performance, the
T2 was designed as a System-on-chip solution for
high-throughput server computing. The T2 chip in-
tegrates not only eight multithreaded processor cores
and 4 Megabytes of shared L2 cache, but also two 10
Gigabit Ethernet controllers, a PCI-E controller, and
four FB-DIMM Memory controllers. The cores them-
selves are dual-pipeline, in-order, and implement the
Sparc V9 instruction set. Operating at 1.4 GHz, a
T2 core supports 8 fine-grained hardware threads.
These threads are divided into thread groups of 4
threads, and each thread group can issue to one of
the pipelines each cycle. Each individual thread ex-
ecutes slowly relative to a thread on a superscalar
processor, but the aggregate instruction throughput
of all 16 pipelines (8 cores) can potentially be much
higher.

Note that on none of the multi-core processors
does StreamIt give us an interface to specify proces-
sor affinities. Nor is the StreamIt compiler aware of
the cache-coherence topology of the system. Thus we
expect that the organization of communication over
cache coherence traffic will be far from optimal on
the systems with non-uniform inter-core communica-
tion latencies and bandwidths. On the single-socket
Niagara system, however, we should not expect such
issues to arise, since there is uniform latency from
each L1 cache to each other L1 cache, and from each
core to the shared L2 cores to

4 Music Information Retrieval

Music information retrieval (MIR) is a field that com-
bines signal processing, machine learning, and psy-
choacoustics to provide music listeners with content-
based information on collections of digital audio.
Typical applications include automatic playlist gener-
ation, content recommendation, music notation tran-
scriptions, and content-based search indexing and or-
ganization. The front end of any MIR task usually

3



involves some method of feature extraction that at-
tempts to collect meaningful low-level data about a
passage of music to be used in subsequent processing
steps. Usually this entails the extraction of short-
time spectral features which are computed on a fre-
quency and amplitude scale more meaningful to the
human auditory system.

An example of this type of feature, well-known
in the speech recognition community, are Mel-
Frequency Cepstral Coefficients (MFCCs) [10][6].
The extraction of these features begins by sum-
ming short-time spectral energy (computed using an
FFT) into frequency bands distributed on a mean-
ingful perceptual scale. These band energies are then
amplitude-compressed using a decibel log scale and
then dimensionality-reduced using the discrete cosine
transform. The problem with this method is that in
order to achieve the necessary spectral resolution at
lower frequencies, the duration of the short-time anal-
ysis frame needs to be around 23ms worth of audio
samples long, which doesn’t give fine enough time res-
olution for certain types of musical rhythm analysis.

One way to combat this time/frequency resolu-
tion trade-off is to perform a frequency warping on
the audio signal prior to applying the FFT. An
appropriately-designed warping will place each band
of interest within the bandwidth of a single FFT co-
efficient, thereby allowing the time domain analysis
window to be reduced in size to twice the number of
desired bands. This results in a reduction of required
time window from 23ms to as low as about 1ms.

The following section explains our implementation
of this type of warped-frequency spectral feature ex-
traction.

5 Algorithms Implemented

The process of warping the frequency axis is ac-
complished using a tapped and downsampled cas-
cade of all-pass filters [2]. The intuition behind this
scheme is illustrated in Figure 3, in which the unit de-
lay elements of an FFT filterbank are replaced with
frequency-selective delay elements in the form of all-
ass filters, A(z). It has been shown that a perceptu-
ally meaningful warping can be approximated using
simple first order all-pass filters of the form:

A(z) =
z−1 − λ
1− λz−1

(1)

At 44kHz sampling frequency, the resulting warp-
ing optimally fits the bark perceptual frequency scale
when the parameter λ ≈ 0.7565 [7].

FFT

A(z)

A(z)

N ↓

N ↓

N ↓

A(z)

N ↓

Figure 3: FFT filterbank using delay elements replaced
with all-pass frequency-selective delays (A(z)). The boxes
containing “N ↓” are Nth-order downsamplers.

The primary concern when computing this warped
spectral transform is the complexity involved in the
all-pass chain. Each all-pass filter is an IIR filter that
must retain state information; therefore, the savings
of fast FFT filtering cannot be employed here. The
main bottleneck becomes the all-pass chain, and due
to its streaming cascade structure, it is a prime candi-
date for description, optimization, and parallelization
using StreamIt.

We implemented two versions of the spectral fea-
ture extraction process in StreamIt. First, motivated
by way in which StreamIt seems to handle the parti-
tioning of coarse-grained program structure, we pro-
duced a coarse-grained all-pass chain structure, which
can be viewed in Figure 4. The all-pass structure in-
volves only a single pipeline that contains all-pass
filter elements which act on some of the data while
passing other data untouched. Large-scale downsam-
pling is carried out at the end of the all-pass chain.
Computing the all-pass chain in this manner adds a
considerable amount of integer operations involved
in the passing of the unused data at each step; how-
ever, it was our hope that structuring computation
in this way would lead to an easy partitioning for the
StreamIt compiler.

For the second implementation, we used a fine-
grained structuring that is almost exactly translates
the block diagram in Figure 3. The structure, which
can be viewed in Figure 5, breaks up the filtering
and downsampling into separate StreamIt “filters”,

4



WarpedCoarseFFT1

TappedAllPassChain

FFTKernel1

AnonFilter_a0

FFTKernel1 FFTKernel1

FFTTestSource

AllPassFilter

AllPassFilter

AllPassFilter

TappedDownsample

Window

real2complex

roundrobin(2,2)

CombineDFT CombineDFT

roundrobin(4,4)

CombineDFT

FFTMagnitude

FloatSink

Figure 4: Coarse-grained all-pass chain for a frame size
of 4

so that only the minimum amount of operations are
performed for each part of the chain. We anticipated
this implementation would perform much better on
a uniprocessor, but felt that because of its recursive
structure, it would not parallelize well.

Figure 5 shows the stream graph of the complete
fine-grained program, including the FFT, frame win-
dowing, and complex-valued operations. A uselessly
small FFT size (4) is used for simplicity. Typical ap-
plications may employ anywhere from 16 to 64 bands,
which would require FFT sizes between 32 and 128.
For frame sizes such as these, the stream graph would
be significantly larger.

6 Performance Data Obtained

We implemented all of the aforementioned codes in
the StreamIt language, in order to evaluate their per-
formance on our platforms. Performance data for the
Coarse-grained All-pass filter bank were obtained on
our Clovertown and Opteron Systems. We directed
the StreamIt compiler to generate five different ver-
sions of the code, for 1, 2, 4, 6, and 8 threads, at
optimization level -O1. Higher optimization levels
did not finish compilation, as the StreamIt compiler
exhausted all of the machine’s 2 GB of DRAM. We
then compiled the code with the GNU g++ compiler
at optimization level -O3. Table 1 and table 2 display
the execution times of the code on the two x86 target
machines. All times in these tables are are in sec-
onds. The first column shows the number of threads
used. The second column shows the wall-clock exe-
cution time of the code. To demonstrate the effect
of thread-creation overheads, the third column shows
the amount of time spent inside system calls. To
demonstrate the parallelization efficiency, the fourth
column shows the sum of the execution times of all
threads. The fifth column shows the speedup over
the single-threaded StreamIt code.

The StreamIt compiler generates a “work esti-
mate”, containing an estimate of the amount of work
each thread must do in each iteration of a steady-
state streaming computation. The last column of ta-
bles 1 and 2 shows the expected speedup from par-
allelization, based on the length of the critical path
(i.e. the thread with the longest work estimate), over
the single-threaded StreamIt code.

Clearly, the realized performance falls short of the
expected performance. Since, as we will shortly see,
the single-threaded performance of the code is very
acceptable relative to our other implementations, we
expect that the lackluster performance is due pri-
marily to the communication-topology agnosticism

5



WarpedFineFFT1

TappedAllPassChain

AnonFilter_a1

AnonFilter_a0

TappedAllPassChain

AnonFilter_a1

AnonFilter_a0

TappedAllPassChain

AnonFilter_a1

AnonFilter_a0

FFTKernel1

AnonFilter_a2

FFTKernel1 FFTKernel1

FFTTestSource

duplicate

Downsample AllPassFilter

roundrobin(1,3)

Window

duplicate

Downsample AllPassFilter

roundrobin(1,2)

duplicate

Downsample

AllPassFilter

roundrobin(1,1)

Downsample

real2complex

roundrobin(2,2)

CombineDFT CombineDFT

roundrobin(4,4)

CombineDFT

FFTMagnitude

FloatSink

Figure 5: Fine-grained all-pass chain for a frame size of
4

of the StreamIt compiler. The fact that most pos-
itive speedups reported from StreamIt are on the
MIT Raw architecture (with a very regular, high-
performance, and compiler target-able communica-
tion fabric) supports this hypothesis.

Note that we were unable to execute the code on
the most interesting of our multicore targets, the Ni-
agara processor. Section 7 details our difficulties in
running those tests.

6.1 Core 2 Duo T9300 (Penryn)

Because of the difficulty encountered in porting the
StreamIt compiler to our target architectures, we de-
cided to test our code on a dual-core machine to
which we had root access. This greatly simplified
the compiler build due to its need for a particular
antiquated version of java and other non-standard
packages. Naturally, as graduate students, we were
limited to one of our own personal laptops to meet
this requirement.

The Intel Core 2 Duo T9300 (codename Penryn)
has two cores each clocked at 2.5GHz which share a
6MB level 2 cache. The level 1 data and instruction
caches are each 32kB in size.

Figure 6 shows the timing results obtained for the
coarse-structured implementation run on one and two
cores and compiled with StreamIt optimizations on
and off (-O1 and -O0). Speedup is observed for the
three largest frame sizes using the -O1 optimizations;
however, with optimizations off any speedup is negli-
gible and overall it actually performs better.

16 (1E7) 32 (1E6) 64 (1E5) 128 (1E4)

Frame Size (Iterations)

0

5

10

15

20

25

30

35

S
e
c

Coarse-Grained Warped Spectrum

1 Core (O1)
2 Cores (O1)
1 Core (O0)
2 Cores (O0)

Figure 6: Coarse-Grained implementation performance
on 1 and 2 cores at two optimization levels.

This dismal parallelization and optimization can
most likely be attributed to two elements. First, the
StreamIt compiler does not seem to be optimized at
all for the basic consumer-grade x86 dual core archi-
tecture. Second, one of the three primary StreamIt
compiler optimizations is to fuse or coarsen adjacent

6



filters when they do not contain state information.
Since the all-pass filters in this implementation are
IIR filters, they are “stateful” and may be hurt by
this optimization or not allowed to use it.

The results for the fine-structure implementation
are even more disheartening for those hoping to get
free parallel performance out of the StreamIt com-
piler. For the two frame sizes that compiled (see Fig-
ure 7), a significant slowdown occurred when moving
to two cores. However, this implementation benefited
greatly from use of the -O1 optimization flag.

16 (1E7) 32 (1E6) 64 (1E5) 128 (1E4)

Frame Size (Iterations)

0

2

4

6

8

10

12

S
e
c

Fine-Grained Warped Spectrum

1 Core (O1)
2 Cores (O1)

Figure 7: Fine-Grained implementation performance on
1 and 2 cores at two optimization levels.

Comparing the best runs of each of the two meth-
ods with a thoughtfully optimized Matlab implemen-
tation (Figure 8), we see that the fine-structured
StreamIt implementation (compiled with the -O1
flag) performed significantly better using only one
core than the other two did using two cores. This
result is encouraging for those attracted by the sim-
ple StreamIt style of programming applications who
would like to reap performance gains on a uniproces-
sor architecture without having to worry about all
the details of low-level C programming.

7 Performance Data Missing

To our despair, the process of porting the StreamIt
infrastructure to our set of target architectures was
more difficult than anticipated. We had hoped that
the similarities of the UNIX environment and cache-
coherent architectures would be sufficient to port the
runtime and StreamIt compiler generated C++ code.
Here, we document our experience to the contrary.

Our strategy for compiling StreamIt code for mul-
tiple platforms attempts to leverage the fact that
the StreamIt compiler’s output is C++ code. That
is, the input StreamIt program is parsed and opti-
mized based on its pipe-and-filter streaming struc-

16 (1E7) 32 (1E6) 64 (1E5) 128 (1E4)

Frame Size (Iterations)

0

10

20

30

40

50

60

70

S
e
c

Warped Spectrum Methods Compared

Matlab, 2 Threads
Coarse, 2 Cores (O0)
Fine, 1 Core (O1)

Figure 8: Performance using Matlab, coarse-grained on
two cores (-O0), and fine-grained on one core (-O1)

ture. The output of the StreamIt compiler is a
C++ program utilizing a hand-written C++ run-
time library. Threads are created via the PThreads
POSIX threading library, and assigned statically by
the StreamIt compiler with a subset of the computa-
tion of the program. Communication takes the form
of inter-thread shared circular queues.

Ideally, we would be able to compile the C++
runtime and generated code with a platform-specific
compiler and run the binaries. However, even after
successfully generating binaries in this manner, the
code did not execute correctly. The runtime library
is over 5,000 lines of complex multi-threaded C++
code, and the generated C++ programs are usually
over 26,000 lines long. The StreamIt system does not
provide any high-level debugger, and tracing high-
level events through the morass of automatically gen-
erated C++ code is nearly impossible.

We were able to produce binaries for the Fine-
grained version of the Warped Delay filter bank for
all targets. Likewise, we were able to produce bina-
ries of all codes for the Niagara processor. We re-
peatedly encountered two bugs. First, code run on
Niagara would always terminate after approximately
1.07 seconds, regardless of how long the code should
have taken. Since the execution of the C++ code
quickly disappears into virtual functions and multiple
threads, even this relatively simple-sounding bug was
impossible to trace. Second, some codes exit almost
immediately, providing a rather cryptic error message
from the runtime relating somehow to a broken com-
munication link between threads. The runtime code
that generates this message is uncommented, and we
were unable to track down its source. Our best the-
ory is that the runtime code contains inter-thread
synchronization bugs; these frequently are only cor-
rectable by re-writing significant portions of the code.

7



In short, the StreamIt code is “research-grade” at
best. Most of the performance results provided in the
StreamIt literature are from runs on the MIT Raw
architecture, which bears little similarity whatsoever
to our target platforms. Moreover, very few, if any,
substantial codes have been written for any target by
programmers outside of the StreamIt research group.
Consequently the code base released to the public is
in a rather immature state. For example, one early
bug we found was caused by the runtime simply not
checking whether the return value of a C Standard
IO fopen() call was valid. During our work, we en-
countered several such “simple” problems that inspire
little confidence in the quality of the StreamIt code
base.

8 Conclusion

Despite our inability to obtain a full set of results,
we can still draw some insight into the applicability
of StreamIt for MIR applications. First, we believe
that a high-level programming interface is necessary
for productivity. Second, it is crucial for performance
that as much of the overhead associated with a high-
level language be pushed to compile-time, rather than
run-time. Finally, we believe that StreamIt’s com-
piler is missing some crucial optimizations for multi-
core performance.

It is difficult to dispute the claim that high-level
programming interfaces increase productivity. If a
programming environment is well-suited to the tar-
get application, then it is unlikely that the program-
mer effort necessary to adopt the new interface will
be prohibitive. In the case of StreamIt for MIR ap-
plications, the StreamIt language allows an efficient
way of expressing the parallelism inherent in our ap-
plications. By providing a runtime environment that
implements the pipe-and-filter streaming communi-
cation semantics, StreamIt allowed us to focus en-
tirely on the implementation of the algorithms.

StreamIt prevents most of the overheads associated
with its high-level language from being run-time bot-
tlenecks. Compared with our equivalent Matlab im-
plementation, our uniprocessor StreamIt implemen-
tation is much more efficient. We believe this is due
to StreamIt’s substantial and thorough lowering into
C++ code. The StreamIt language is not entirely
dissimilar from C++, this transformation is not pro-
hibitively difficult. Matlab, on the other hand, is a
dynamic and interpreted language whose efficiency
comes primarily from highly-optimized implementa-
tions of intrinsic functions.

However, StreamIt was still unable to provide sat-

isfactory scaling behavior on our multicore platforms.
We believe that this is primarily due to the StreamIt
compiler’s agnosticism of the cache-coherence topol-
ogy of our target processors. Since previous StreamIt
literature has been able to demonstrate satisfactory
performance on other multi-core processors, we do
not believe that StreamIt’s approach is fundamen-
tally flawed. Rather, for StreamIt to be useful on the
cache-coherent multi-core processors that are widely
available, the compiler needs to incorporate the rela-
tive communication costs between different cores into
its optimizations. The generated code should then
utilize processor affinity interfaces provided by most
modern operating systems to ensure that its perfor-
mance estimates are valid.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis,
P. Husbands, K. Keutzer, D. Patterson,
W. Plishker, J. Shalf, S. Williams, et al. The
Landscape of Parallel Computing Research: A
View from Berkeley. Electrical Engineering and
Computer Sciences, University of California at
Berkeley, Technical Report No. UCB/EECS-
2006-183, December, 18(2006-183):19, 2006.

[2] C. Braccini and A. Oppenheim. Unequal band-
width spectral analysis using digital frequency
warping. Acoustics, Speech, and Signal Process-
ing [see also IEEE Transactions on Signal Pro-
cessing], IEEE Transactions on, 22(4):236–244,
1974.

[3] M. Gordon, W. Thies, and S. Amarasinghe. Ex-
ploiting coarse-grained task, data, and pipeline
parallelism in stream programs. Proceedings of
the 12th international conference on Architec-
tural support for programming languages and op-
erating systems, pages 151–162, 2006.

[4] M. Gschwind. Chip multiprocessing and the cell
broadband engine. In CF ’06: Proceedings of the
3rd conference on Computing frontiers, pages 1–
8, New York, NY, USA, 2006.

[5] C. NVIDIA. Compute Unified Device Archi-
tecture Programming Guide. NVIDIA: Santa
Clara, CA, 2007.

[6] L. Rabiner and B. Juang. Fundamentals of
speech recognition. Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1993.

8



[7] J. Smith III and J. Abel. Bark and ERB bilinear
transforms. Speech and Audio Processing, IEEE
Transactions on, 7(6):697–708, 1999.

[8] Streamit language specification version 2.1.
http://www.cag.lcs.mit.edu/streamit/
papers/streamit-lang-spec.pdf, September
2006.

[9] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A Language for Streaming Applica-
tions. International Conference on Compiler
Construction, 4, 2002.

[10] F. Zheng, G. Zhang, and Z. Song. Comparison of
Different Implementations of MFCC. Journal of
Computer Science & Technology, 16(6):582–589,
2001.

9



Threads Wall Time System Time Sum time Speedup Expected
1 19.32 0.00 18.30 1.00 1.00
2 14.08 0.27 19.37 1.37 1.93
4 11.80 0.36 21.07 1.63 3.95
6 13.19 0.72 24.34 1.46 5.53
8 12.39 1.01 26.23 1.56 7.307

Table 1: Coarse-grained filter bank scaling on Clovertown. All times shown are in seconds.

Threads Wall Time System Time Sum time Speedup Expected
1 33.82 0.01 31.59 1.00 1.00
2 22.59 0.26 27.33 1.50 1.93
4 21.19 0.83 27.23 1.60 3.95

Table 2: Coarse-grained All-pass filter bank on Opteron

10


