
An Interior-Point Newton Algorithm for Non-negative Matrix

Factorization

Eric Battenberg

December 12, 2008

Abstract

In this project, we propose a Newton step barrier method for performing non-negative matrix factor-

ization. The algorithm is compared to a popular multiplicative gradient-based algorithm in its perfor-

mance and efficiency using artificial data. The algorithm is then applied to audio source separation.

1 Introduction

Non-negative matrix factorization (NMF) is a blind source separation technique that has been successfully

used in audio source separation, computer vision, and document clustering [1][2][3]. NMF can be phrased

as an optimization problem in which we are given a matrix, Y, with non-negative elements and wish to find

non-negative factor matrices, A and S, which minimize the error between Y and AS. In basic applications,

the error is computed using a Euclidean distance cost function.

D(Y,AS) = ‖Y −AS‖2F =
∑
ij

(Yij − (AS)ij)
2 (1)

In certain applications, it becomes advantageous to compute the error using a cost function that takes

into account certain aspects of the structure of the data and the desired output. For audio source separation,

the performance of NMF is improved when using a matrix divergence cost function rather than the basic

Euclidean distance function [1]. The matrix divergence is computed as

D(Y‖AS) =
∑
ij

(
Yij log

Yij

(AS)ij
−Yij + (AS)ij

)
(2)

Using the above matrix divergence cost function as the objective to be minimized, we can phrase NMF

as the following optimization problem:

1



minimize
A,S

D(Y‖AS)

subject to Aij ≥ 0 ∀i, j A ∈ RN×K+

Sij ≥ 0 ∀i, j S ∈ RK×F+

Y ∈ RN×F+

(3)

Where the dimensions N and F are determined by the size of the matrix to be factored, and K is chosen

to be the number of sources we desire for the decomposition.

The above problem is not jointly convex in both of the optimization matrix variables; however, it is

convex in each matrix individually. Lee and Seung have introduced an algorithm that alternates gradient-

based multiplicative updates with respect to each of the two matrices to be optimized [4]. The updates are

as follows:

Sαµ ← Sαµ

∑
iAiαYiµ/(AS)iµ∑

k Akα
Aiα ← Aiα

∑
µ SαµYiµ/(AS)iµ∑

ν Sαν
(4)

Lee and Seung show that the objective, D(Y‖AS), is non-increasing under these update rules. Be-

cause the above algorithm is much easier to implement than additive gradient-based methods and is less

computationally complex than conjugate gradient methods, these updates have been widely used in audio-

applications that employ NMF. The main drawback of this algorithm and any gradient-based algorithm used

to minimize a non-convex function is that it will typically converge to local minima rather than an optimal

global minimum.

To get around this local minima problem, we can run the algorithm multiple times with A and S initialized

to different randomly generated values each time. Then we can select the result that achieves the smallest

value of the cost function. These is also research being done to intelligently choose initial values for A and

S in order to limit the number of times the algorithm must be run (ideally it would be one). In this paper

we focus on how well NMF performs with random initializations.

In the following section, we propose an iterative algorithm that uses a logarithmic barrier function to

maintain non-negativity of the iterates and performs Newton steps to minimize the cost function plus the

barrier at each step. Along the lines of the Lee and Seung algorithm, our proposed algorithm alternates

between Newton steps with respect to each of the two factor matrices. The barrier weight is then updated

according to the accuracy of the previous Newton step. The specifics of the algorithm are covered in the

following section.

2 Algorithm

2.1 Cost functions with barriers

In order to enforce non-negativity of the matrices A and S, we employ a logarithmic barrier function.

2



φ(x) = −
∑
i

log(xi) (5)

Our new cost functions with respect to A and S then become:

f(A) = tD(Y‖AS) + φ(A) (6)

f(S) = tD(Y‖AS) + φ(S) (7)

2.2 Newton step

The Newton step with respect to a function f(x) at the point x is:

4xnt = −52f(x)−1 5f(x) (8)

So we must compute the Hessian and gradient of each of the cost functions with respect to A and S (eq.

6). We notice that the cost functions are separable with respect to the rows of A and with respect to the

columns of S. To see this we write:

f(A) =
∑
i

tA∑
j

(
(a(i)S)j −Yij log(a(i)S)j

)
+ φ(a(i))

+ c (9)

Where a(i) is the ith row of A, tA controls the strength of the barrier, and c equals the terms that are

constant with respect to A.

For S we have:

f(S) =
∑
i

tS∑
j

(
(As(i))j −Yij log(As(i))j

)
+ φ(s(i))

+ c (10)

Where s(i) is the ith column of S, tS controls the strength of the barrier, and c equals the terms that are

constant with respect to S.

Because the two cost function are separable, we can treat the rows of A and the columns of S as

independent vectors to be optimized separately. The gradient and Hessian with respect to a(i) are calculated

as follows:

ga(i) = 5f(a(i)) = tA

(
1− y(i)

a(i)S

)
ST − 1/a(i) (11)

Ha(i) = 52f(a(i)) = tASFiST + diag
(
1/a(i)/a(i)

)
(12)

where Fi = diag
(
y(i)/(a(i)S)/(a(i)S)

)
(13)

3



Where division is carried out element-wise. The gradient and Hessian with respect to s(i) are:

gs(i) = 5f(s(i)) = tSAT

(
1−

y(i)

As(i)

)
− 1/s(i) (14)

Hs(i) = 52f(s(i)) = tSATGiA + diag
(
1/s(i)/s(i)

)
(15)

where Gi = diag
(
y(i)/(As(i))/(As(i))

)
(16)

The computation of the above differentials is fairly straightforward; however, we can greatly improve the

efficiency with which we calculate the Hessian by computing ATGiA and SFiST a dyadic sum, i.e.

ATGA =
∑
i

Giia(i)Ta(i) (17)

Where G is diagonal and we’re taking a linear combination of the outer product of each row of A. Since

all of the outer products can be stored and reused for Hessian calculation with respect to subsequent rows of

A, this method gives a 20x speedup in the Matlab implementation compared to direct matrix multiplication.

We can use a similar dyadic sum to compute the Hessian with respect to columns of S.

After we compute the gradient, g, and Hessian, H, the Newton step direction can be computed by

solving the system Hx = g. The amount of computation required in this step is insignificant compared to

the computation of the Hessian.

2.3 Backtracking line search

After we compute the Newton step direction, we must determine a suitable Newton step magnitude. To do

this, we use a simple backtracking line search, by starting with an initial magnitude of tbt = 1 and shrinking

the magnitude until we get:

f(x+ tbt 4x) ≤ f(x) + αtbt 5f(x)T 4x (18)

For α ∈ (0, 0.5). If the above condition does not hold, we update tbt by multiplying it by β ∈ (0, 1).

After we find an appropriate tbt, we update x:

x← x+ tbt 4x (19)

2.4 Softening the barrier

We use the above procedures to compute updates to A and S. For a given tA, we update A using one

Newton step. Then we update S once. In order to soften the barrier and allow values to approach zero, we

must increase tA and tS.

4



Each Newton step carries with it the value λ2, which can be used to decide when the Newton iterations

for a certain t have converged sufficiently.

λ2 = 5f(x)T 52f(x)−1 5f(x) (20)

When the λ2 value for a Newton step is less than a specified threshold then we increase the corresponding

barrier parameter tA or tS by multiplying it by a value µ > 1.

2.5 Putting it all together

The entire algorithm can be summarized as follows:

1. Initialize A and S to random positive values and select an initial value for the barrier parameters tA

and tS

2. Complete a Newton step to update S, then a Newton step to update A.

3. If λ2 for an iteration is less than a specified value then we multiply the corresponding barrier value by

β and continue to step 4, otherwise we return to step 2.

4. If both tA and tS are greater than specified values we terminate the iterations and output the final

values of A and S.

3 Results

We evaluate our algorithms in two ways. First we use artificially generated ground truth matrices for A and

S and use their product as the input matrix to be factored. We compare the quality of factorizations and

time to convergence for the Lee and Seung multiplicative algorithm and for our own. We generate mixing

matrices A of different condition numbers to test the robustness of the NMF procedures.

Second we use an actual spectrogram from a musical piece as the input matrix and test the ability of the

algorithms to separate out the drum and percussion components from the spectrogram.

3.1 Artificial Data

The rows of an example ground-truth S matrix are plotted in Figure 1. This S matrix is multiplied by

various 32x4 A matrices of different condition numbers to test the ability of the two algorithms to arrive

at the ground-truth factors for many different random initializations of the matrices. An example of the

resulting observation matrix Y = AS is shown in Figure 2

In the tables below we have the results for 100 trials using different randomly generated initial matrices.

Table 1 shows the results using an A matrix with a condition number of 3.75. This low condition number

5



0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

3

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

4

Figure 1: The rows of an example S matrix

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

Figure 2: The example S matrix from Figure 1 mixed with a 32x4 A matrix with condition number 3.75

6



Lee/Seung Barrier Newton

Best(Avg) Cost 7.5x10−5 (0.026) 2.9x10−4 (0.004)

Best(Avg) Source Div 966 (3290) 658 (1370)

Avg Time [sec] 51.7 34.5

Table 1: Results using A matrix with condition number 3.75

means that the columns of the matrix A are not too similar, and therefore it should be easier to distinguish

when individual sources (rows of S) are present.

For this particular matrix A, our Barrier Newton method achieves a lower value of the cost function on

average than does the Lee and Seung algorithm; however, it doesn’t achieve the best minimum of the trials.

The smallest value of the cost function isn’t our actual objective in NMF though, so we also compare the

divergence between the resulting S matrices with that of the ground-truth matrix. In this case, the Barrier

Newton method achieves a better overall and average source divergence. In addition, it converged around

50% faster on average. The best version from the 100 trials of the recovered source matrix is shown in Figure

3.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

3

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

4

Figure 3: For the A matrix with condition number 3.75, this shows the rows of the resulting S matrix (using

the barrier-Newton method) with best divergence with respect to the ground truth S matrix. The plot

definitely resembles the original S matrix shown in Figure 1

Table 2 shows the results when the A matrix has a condition number of 50. This time the Barrier

Newton method does worse with respect to source divergence; however, we can see that it achieves much

lower values of the cost function in 1/10 the time. In this case, the high condition number doesn’t allow for

easy distinction between sources in the mixed matrix. Because the columns of A are so similar in this case,

the Barrier Newton method does a much better job of reconstructing the original mixed matrix even though

it does not recover the actual sources well. An example of the recovered sources is shown in Figure 4.

7



Lee/Seung Barrier Newton

Best(Avg) Cost 1.5x10−5 (0.110) 7.0x10−6 (7.1x10−5)

Best(Avg) Source Div 1.8x104 (2.74x104) 2.4x104 (3.68x104)

Avg Time [sec] 75.8 7.7

Table 2: Results using A matrix with condition number 50

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

3

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

4

Figure 4: For the A matrix with condition number 50, this shows the rows of the resulting S matrix (using

the barrier-Newton method) with best divergence with respect to the ground truth S matrix.

8



3.2 Music Data

Testing the ability of NMF to separate an audio signal into separate musical sources is a difficult task because

it requires a bit of hand labeling and there is always the question of what is actually ground truth. In this

example, we use a 10 sec clip of audio that includes a snare drum, a bass drum, and two guitar mixed

together on a single channel of audio. We are able to apply NMF in this case despite the single channel

observation by computing a 512 frequency bin spectrogram of the signal. These 512 frequency bins serve as

the mixed observations, and the spectrogram is used as the mixed matrix Y.

We will attempt to factorize the spectrogram into 10 sources. The idea is that hopefully the contribution

from the snare drum and bass drum will use as few sources as possible (ideally one each), and the various

guitar notes played will use the remaining sources. After NMF is complete, we use our previously developed

feature extraction and SVM classification system to distinguish between sources that could be drums and

those that are not [5]. By doing this we can reconstruct a spectrogram containing only the drum instruments

by zeroing the contribution from the sources classified as non-drum. The resulting drum spectrogram can

be used to resynthesize an audio waveform containing an approximation of the drum track from the song.

To evaluate the results, we must have some sort of ground-truth drum track data. Luckily there are

archives of audio freely available online that contains unmixed audio tracks to be used for just this purpose.

In this experiment, we use 10 seconds of the track TV On by Kismet from the MTG Mass Resources

archive [6].

The results are shown in Table 3. The Barrier Newton method is able to achieve a slightly lower value of

the cost function on average. The second row of the table shows the divergence between the resulting NMF

drum track spectrograms and the ground-truth spectrogram computed when only the drum instruments

are mixed into the audio signal. We see that the Lee/Seung algorithm achieves a better minimum, though

Barrier Newton performs significantly better on average. The signal-to-noise ratio also shows this trend,

where Barrier Newton performs better on average. The startling result here though is the much longer

average time to convergence of the Barrier Newton method. Even after tweaking the convergence and

update parameters, it still takes about four times as long to sufficiently converge on average.

Lee/Seung Barrier Newton

Best(Avg) Cost 9.16x106 (9.30x106) 9.16x106 (9.25x106)

Best(Avg) Drum Track Div 2.56x107 (4.98107) 2.81x107 (3.63x107)

Best(Avg) Drum SNR 12.16 (11.53) 12.08 (11.67)

Avg Time [sec] 41.4 162.5

Table 3: Results for drum track separation on 10 sec of sample audio

9



3.3 Conclusion

Alternative techniques for Non-negative matrix factorization are definitely desirable. The Lee/Seung multi-

plicative algorithm is very easy to implement and works fairly quickly, which is why it is so widely used. As

seen in this project, using a higher order and more complex iterative algorithm for NMF can work very well

for certain problems. In the target application of music source separation, the initial results of the proposed

Barrier Newton method are not that promising. If the algorithm isn’t able to converge in a small number of

steps, the cost of computing the Hessian in each step makes this approach painfully slow.

Future work along these lines may include developing an intelligent update method for the Barrier

parameters which takes into account the complementary slackness information contained in the dual of the

optimization problems. This could allow for much larger increases in the Barrier parameters and therefore

much quicker convergence.

References

[1] T. Virtanen, “Monaural sound source separation by nonnegative matrix factorization with temporal

continuity and sparseness criteria,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 15, no. 3, pp. 1066–1074, 2007.

[2] D. Guillamet and J. Vitria, “Classifying faces with nonnegative matrix factorization,” in Proc. 5th Catalan

Conference for Artificial Intelligence.

[3] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factorization,” in

Proceedings of the 26th annual international ACM SIGIR conference on Research and development in

informaion retrieval. ACM Press New York, NY, USA, 2003, pp. 267–273.

[4] D. Lee and H. Seung, “Algorithms for Non-negative Matrix Factorization,” Advances In Neural Infor-

mation Processing Systems, pp. 556–562, 2001.

[5] E. Battenberg, “Improvements to Percussive Component Extraction Using Non-Negative Matrix Factor-

ization and Support Vector Machines,” http://www.eecs.berkeley.edu/ ericb/school/masters.pdf, 2008.

[6] M. Vinyes, “MTG MASS Resources,” http://www.mtg.upf.edu/static/mass/resources, 2008.

10


