The Application

*Audio source separation is an important part of Music
Information Retrieval

Drum track extraction is a specific example of source
separation and is useful in rhythm summarization, drum
transcription, and beat tracking.

‘We use Non-negative Matrix Factorization (NMF) as the
source separation technique.

*The process:
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*For a 512x3500 spectrogram representing 20 seconds of audio
and 30-source NMF:

‘NMF takes 80% of the compute time (18.5 of 23.1 sec) in
the Matlab implementation.

*We will parallelize NMF using OpenMP for multi-core CPUs
and CUDA for Nvidia GPUs.
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Non-Negative Matrix Factorization

NMF is an optimization problem, and for music a

divergence cost function works well:

Given an M x N non-negative matrix X € R *V, hihat W
find matrices W € RTXK and H € Rf *N that mini- bass drum == : " F i F r F
mize the cost function f(X, WH).
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*Example of a design
pattern decomposition for
one update step on CUDA
*This helps us organize our
code and communicate our
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Organizing with Design Patterns
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computational needs.

*SGEMMSs require ~400 Mflops
per iteration, while other steps
require less than 10 Mflops.
*But sums require inter-thread
communication, and divides are
slow.
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Data Parallel

;
OpenMP Results

eintel’s MKL is used for SGEMMs

s = 0;

fpragma omp parallel num_threads (nt)
fpragma omp for reduction (+:s)

for (1=0; 1<N; 1++)

s +=

alil;

for pragma with reduction clause

*OpenMP forand reduction
clauses are used for sums and
element-wise arithmetic

Scaling on dual-socket Nehalem
show:

*4x speedup over sequential C
o7/X speedup over Matlab
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Tuning CUDA

‘We use SGEMM from CUBLAS 2.1

*SGEMMSs run 26% faster if
matrices are padded to multiples
of 32
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int main ()

{

// kernel definition
__global__ void vecAdd(floatx a,

floatx b,

int 1 = threadIldx.x+blockIdx.x*blockDim.x;
+ bl1i];

// kernel invocation

vecAdd<<<B, N>>> (a, b, c) ;

float+ <)

Example of element-wise addition
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*Reorganize binary tree
reduction to avoid divergent

Two ways to organize binary tree reduction

warps and memory bank

Time to sum 30 columns of length 512 (200 iterations)
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CUDA Results A

*CUDA version runs over 30x faster than Matlab version.
«]18.6x faster than OpenMP with 14 threads
*4.3x faster than sequential C

Computation time down to 0.6 sec for 20 sec of audio

which makes the app much more feasible.
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However, programming in CUDA requires much more
effort than OpenMP and Matlab (especially when we need
inter-thread communication).

Programming in low-level CUDA is only worthwhile for

Important compute-intensive routines
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Conclusions

*CUDA can achieve high performance for data-parallel music

applications.

Programmer effort in CUDA is much too great for music

applications programmers.

Continued Work

Developing Python modules of these implementations.
*Potential for Copperhead project to make CUDA more
practical for writing music apps.

*Eventually building a DSL or framework to assist in

_ constructing parallel music apps.




