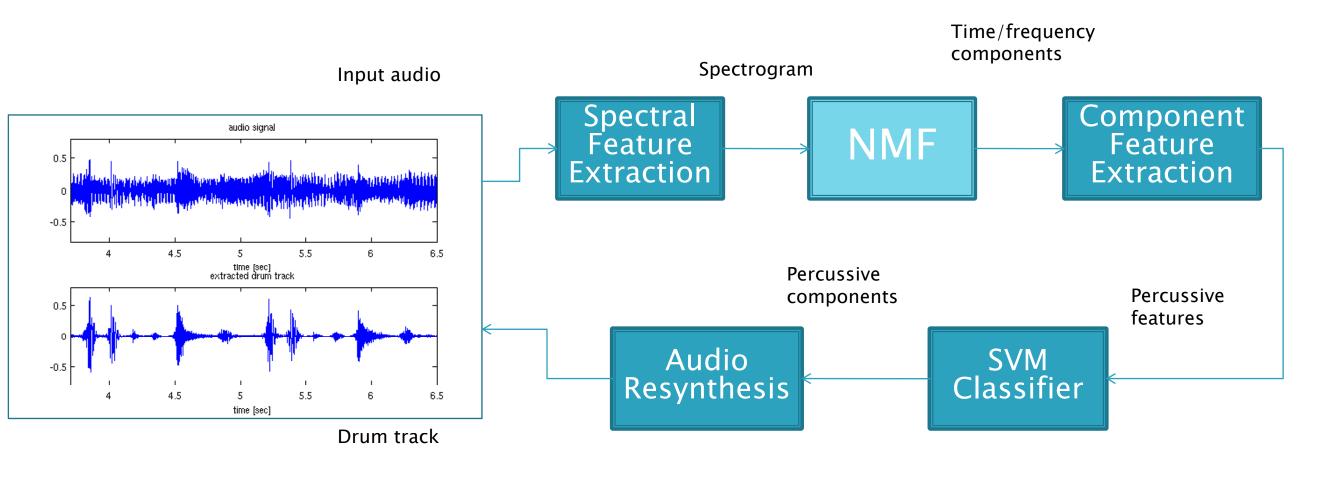


Accelerating Non-negative Matrix Factorization for Audio Source Separation using OpenMP and CUDA

Eric Battenberg ericb@eecs.berkeley.edu

The Application

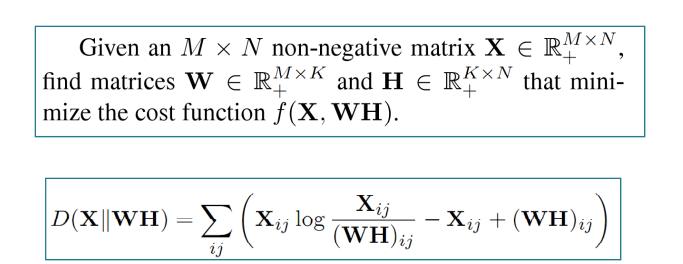
- Audio source separation is an important part of Music Information Retrieval
- •Drum track extraction is a specific example of source separation and is useful in rhythm summarization, drum transcription, and beat tracking.
- •We use Non-negative Matrix Factorization (NMF) as the source separation technique.
- •The process:



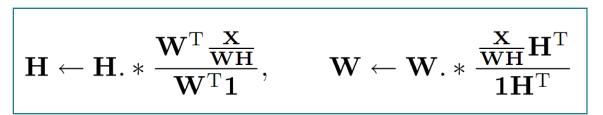
- •For a 512x3500 spectrogram representing 20 seconds of audio and 30-source NMF:
- •NMF takes 80% of the compute time (18.5 of 23.1 sec) in the Matlab implementation.
- •We will parallelize NMF using OpenMP for multi-core CPUs and CUDA for Nvidia GPUs.

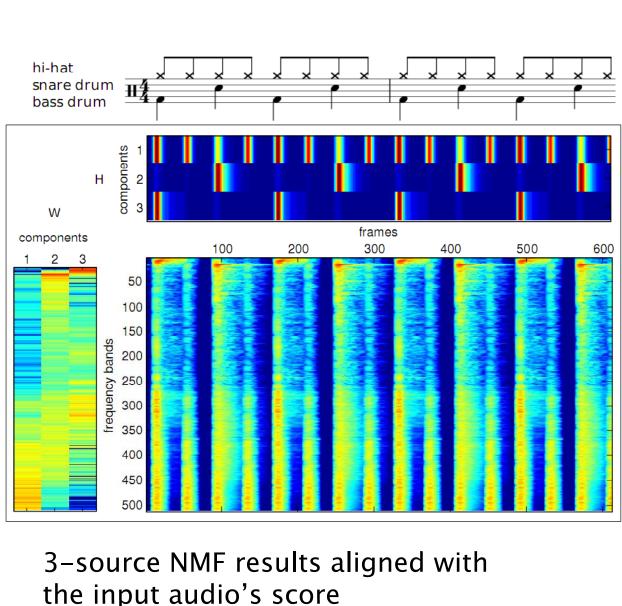
Non-Negative Matrix Factorization

•NMF is an optimization problem, and for music a divergence cost function works well:



•We use multiplicative gradient-based updates:

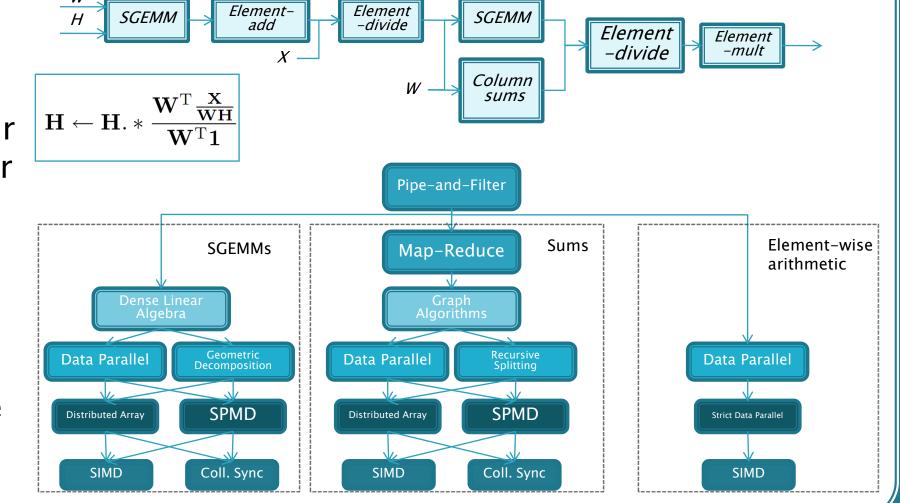




Organizing with Design Patterns

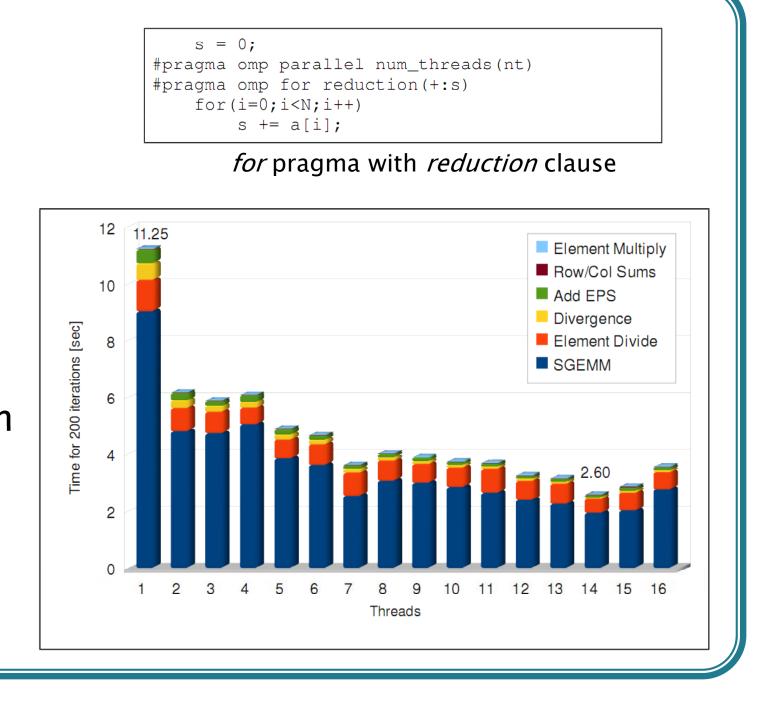
Example of a design pattern decomposition for one update step on CUDA •This helps us organize our $H \leftarrow H.* \frac{W^T \frac{X}{WH}}{W^T 1}$ code and communicate our computational needs.

•SGEMMs require ~400 Mflops per iteration, while other steps require less than 10 Mflops. •But sums require inter-thread communication, and divides are slow.



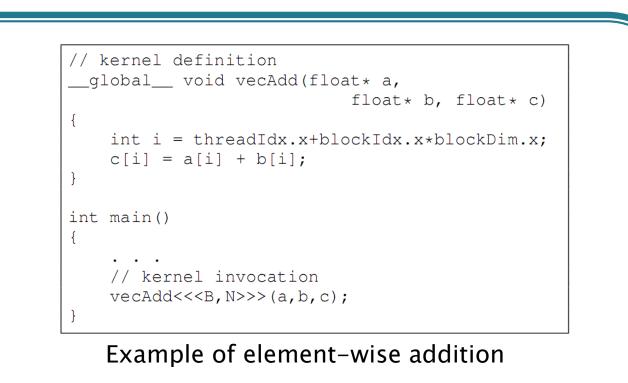
OpenMP Results

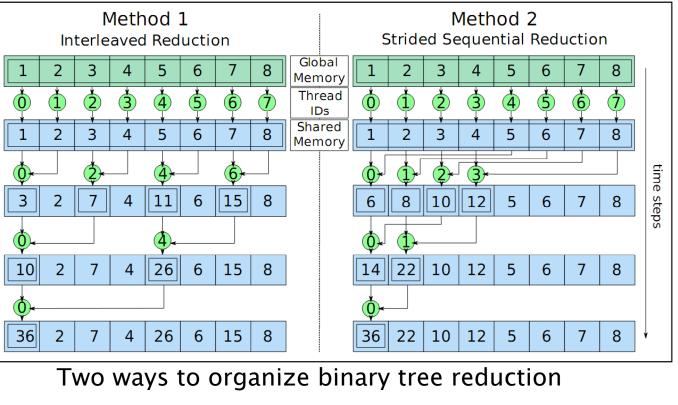
- •Intel's MKL is used for SGEMMs •OpenMP *for* and *reduction* clauses are used for sums and element-wise arithmetic
- Scaling on dual-socket Nehalem show:
- •4x speedup over sequential C
- 7x speedup over Matlab

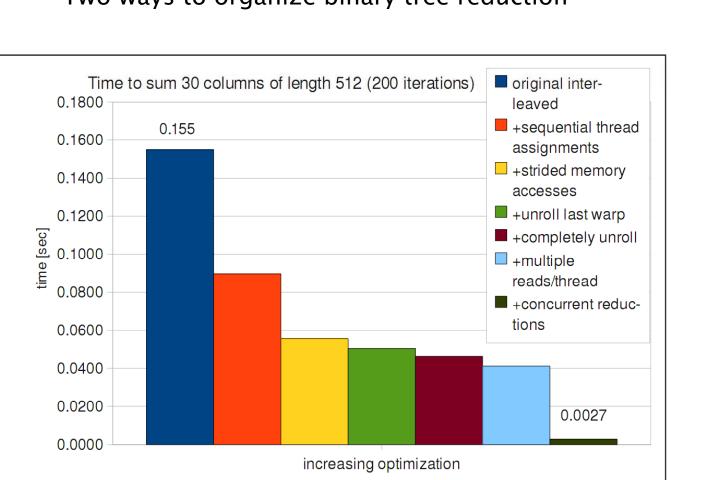


Tuning CUDA

- •We use SGEMM from CUBLAS 2.1 •SGEMMs run 26% faster if matrices are padded to multiples of 32
- •Element-wise arithmetic is accomplished using a separate thread for each element.
- •Reductions (sums) require most programming effort.
- Reorganize binary tree reduction to avoid divergent warps and memory bank conflicts (as in Method 2).
- •Also, loop unrolling, and multiple global memory reads per thread.
- Most speedup comes from running the 30 sums concurrently.

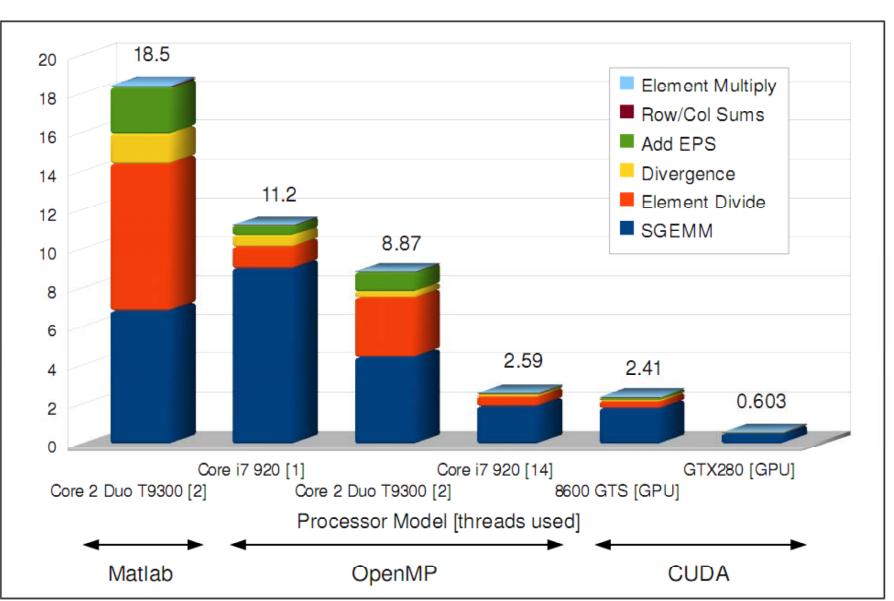






CUDA Results

- •CUDA version runs over 30x faster than Matlab version.
 - •18.6x faster than OpenMP with 14 threads
 - •4.3x faster than sequential C
- •Computation time down to 0.6 sec for 20 sec of audio which makes the app much more feasible.



- •However, programming in CUDA requires much more effort than OpenMP and Matlab (especially when we need inter-thread communication).
- Programming in low-level CUDA is only worthwhile for important compute-intensive routines

Conclusions

- •CUDA can achieve high performance for data-parallel music applications.
- Programmer effort in CUDA is much too great for music applications programmers.

Continued Work

- Developing Python modules of these implementations.
- Potential for Copperhead project to make CUDA more practical for writing music apps.
- Eventually building a DSL or framework to assist in constructing parallel music apps.