The Application

*Audio source separation is an important part of Music
Information Retrieval

Drum track extraction is a specific example of source
separation and is useful in rhythm summarization, drum
transcription, and beat tracking.

‘We use Non-negative Matrix Factorization (NMF) as the
source separation technique.

*The process:

Time/frequency

components
Input audio Spectrogram
audio signal SpECtraI Component
of] Feature Feature
WMMWWM Extraction Extraction
extrag{?c'ﬂa ?i%lu track | | Pe Fcuss ive
el | | | |] components Percussive
| features
‘ ‘ ' ﬁ ' - Audio SVM
: G sk Resynthesis Classifier
tirne [sec]
Drum track

*For a 512x3500 spectrogram representing 20 seconds of audio
and 30-source NMF:

‘NMF takes 80% of the compute time (18.5 of 23.1 sec) in
the Matlab implementation.

*We will parallelize NMF using OpenMP for multi-core CPUs
and CUDA for Nvidia GPUs.

Q

/

~
Non-Negative Matrix Factorization

NMF is an optimization problem, and for music a

divergence cost function works well:

Given an M x N non-negative matrix X € R *V, hihat W
find matrices W € RTXK and H € Rf *N that mini- bass drum == : " F i F r F
mize the cost function f(X, WH).

() |I|Ihllllllhllllllhllllllhl
H §2
£
<. w5 o] | | N | I | N
D(X”WH) - Z (Xz’j log (Wg) - Xij + (WH)zj) Cfmpznem,: 100 200 ft;?)es 400 500 600
ij 1] E=_E N - " — = 1 = —=
— = 100f =
% _ 150 =
*We use multiplicative = =
é 300 —-'
gradient-based updates: e
f 450
E 500

1HT 3-source NMF results aligned with

the input audio’s score

Accelerating Non-negative Matrix Factorization for
Audio Source Separation using OpenMP and CUDA

Eric Battenber J ericb@eecs.berkeley.edu

7~

*Example of a design
pattern decomposition for
one update step on CUDA
*This helps us organize our
code and communicate our

Element
-divide

Column
sums

Organizing with Design Patterns

Element
-mult

computational needs.

*SGEMMSs require ~400 Mflops
per iteration, while other steps
require less than 10 Mflops.
*But sums require inter-thread
communication, and divides are
slow.

N\

Element-wise |
arithmetic

Data Parallel

;
OpenMP Results

eintel’s MKL is used for SGEMMs

s = 0;

fpragma omp parallel num_threads (nt)
fpragma omp for reduction (+:s)

for (1=0; 1<N; 1++)

s +=

alil;

for pragma with reduction clause

*OpenMP forand reduction
clauses are used for sums and
element-wise arithmetic

Scaling on dual-socket Nehalem
show:

*4x speedup over sequential C
o7/X speedup over Matlab

Time for 200 iterations [sec]

M Row/Col Sums
B Add EPS

M Element Divide
B SGEMM

‘I|“|‘| il|“|il ‘i|‘I|‘I|ii|‘II I ‘II
‘il ii|ii| -

1 2 3 4 6 6 7 8 9 10 111 12 13 14 156 16

Threads

Element Multiply

Divergence

N\

—J

(.
Tuning CUDA

‘We use SGEMM from CUBLAS 2.1

*SGEMMSs run 26% faster if
matrices are padded to multiples
of 32

{

}

}

cl[i]

= ali]

int main ()

{

// kernel definition
__global__ void vecAdd(floatx a,

floatx b,

int 1 = threadIldx.x+blockIdx.x*blockDim.x;
+ bl1i];

// kernel invocation

vecAdd<<<B, N>>> (a, b, c) ;

float+ <)

Example of element-wise addition

Method 1 Method 2
Interleaved Reduction Strided Sequential Reduction
Element-wise arithmetic is (%) d; ;;’) 53‘) é"’D % Q; 5; vemor @:1)) C; <Zf> <j:> ;p (; <%> %
accomplished using a separate |poonETeo Bl e G Ao T
thread for each element. o o & & [S et [
3 2 7 4 |11} 6 ||15(8 6 8 [||10(||12|| 5 6 7 8 !
[N
‘Reductions (sums) require most 2| 7] 4 [28] 6]1s] 8 10 izl e o]0
programming effort' 27| 4|26 6|15|8 36/|22(10 (12| 5|6 | 7|8

*Reorganize binary tree
reduction to avoid divergent

Two ways to organize binary tree reduction

warps and memory bank

Time to sum 30 columns of length 512 (200 iterations)

0.1800

conflicts (as in Method 2). oo
Also, loop unrolling, and 0.1400
multiple global memory reads O

£, 0.1000
per thread. E

~ 0.0800
*Most speedup comes from 0.0600
running the 30 sums 0.0400

concurrently. 0.0200

0.0000

0.155

increasing optimization

M original inter-
leaved

M 1sequential thread
assignments

[+strided memory
accesses

® +unroll last warp

M completely unroll

O +multiple
reads/thread

B . concurrent reduc-

tions

<

/
CUDA Results A

*CUDA version runs over 30x faster than Matlab version.
«]18.6x faster than OpenMP with 14 threads
*4.3x faster than sequential C

Computation time down to 0.6 sec for 20 sec of audio

which makes the app much more feasible.

20
Element Multiply

B Row/Col Sums
B Add EPS

18
16

14 Divergence

M Element Divide

18.5
1.2
0
5 87 SGEMM
2.59 2.41

12

10

8
6
4
2
0
Core i7 920 [1] Core i7 920 [14] GTX280 [GPU]
Core 2 Duo T9300 [2] Core 2 Duo T9300 [2] 8600 GTS [GPU]
Processor Model [threads used]
- = > - -
Matlab OpenMP CUDA

However, programming in CUDA requires much more
effort than OpenMP and Matlab (especially when we need
inter-thread communication).

Programming in low-level CUDA is only worthwhile for

Important compute-intensive routines

L

Conclusions

*CUDA can achieve high performance for data-parallel music

applications.

Programmer effort in CUDA is much too great for music

applications programmers.

Continued Work

Developing Python modules of these implementations.
*Potential for Copperhead project to make CUDA more
practical for writing music apps.

*Eventually building a DSL or framework to assist in

_ constructing parallel music apps.

